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Abstract 

Popular  algorithms for feature  matching  and  model  extraction  fall  into two broad 
categories,  generate-and-test  and Hough transform  variations. However, both  methods 
suffer from  problems  in  practical  implementations.  Generate-and-test methods  are 
sensitive to noise in  the  data.  They  often fail when the  generated model fit is  poor 
due to error  in  the selected  features. Hough transform  variations  are  somewhat less 
sensitive the noise, but  implementations for complex problems suffer from large  time 
and  space  requirements  and  the  detection of false positives. This  paper describes  a 
general  method for solving problems where a  model is extracted  from or fit to  data 
that draws  benefits  from both  generate-and-test  methods  and  those based on  the Hough 
transform, yielding a method  superior to both. An important component of the  method 
is the subdivision of the problem  into many subproblems.  This allows efficient generate- 
and-test  techniques to  be used,  including the use of randomization to limit the  number 
of subproblems that must be examined.  Each  subproblem is solved using pose  space 
analysis  techniques  similar to  the Hough  transform, which lowers the sensitivity of the 
method  to noise. This  strategy is easy to implement and  results  in  practical  algorithms 
that  are efficient and  robust. We apply  this  method  to  object recognition,  geometric 
primitive  extraction,  robust regression, and motion  segmentation. 

1 Introduction 
The  generate-and-test  paradigm is a  popular  strategy €or solving  model matching  problems 
such  as  recognition,  detection,  and  fitting.  The  basic  idea of this  method is to  generate 
(or predict)  many  hypothetical  model  positions using the  minimal  amount of information 
necessary to identify  unique  solutions. A sequence of such positions is tested,  and  the 
positions that meet  some  criterion  are retained.  Examples of this  technique  include RANSAC 
E191 and  the  alignment  method [26]. 
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The  primary  drawback  to  generate-and-test  paradigm is sensitivity to noise.  Let  us  call 
the  features  that  are used in  predicting  the model  position for some  test  the distinguished 
features, since they  play a more important role in  whether  the  test is successful. The  other 
features  are undistinguished  features. Error in the  distinguished  features causes the  predicted 
position to  be  in  error. As the  error grows, the  testing  step becomes  more likely to  fail. 

To deal  with  this  problem,  methods have  been  developed to  propagate  errors in the 
locations of the distinguished  features [2, 211. Under  the  assumption of a bounded  error 
region for each of the distinguished  image  features,  these  methods  can  place  bounds  on  the 
locations t o  which the undistinguished  model  features  can be located in an  image.  When 
we count the  number of undistinguished  model  features that can  be  aligned  with  image 
features  (with the  constraint  that  the  distinguished  features  must  always  be  in  alignment  up 
to  the  error  bounds)  these  techniques  can  guarantee  that we never undercount  the  number 
of alignable  features. The techniques will thus never report  that  the  model is not  present 
according to some  counting  criterion  when,  in  fact,  the  model does meet  the  criterion. 

On  the  other  hand,  this  method is likely to overcount the  number of alignable  features, 
even if the  bounds  on  the  location of each individual  feature  are  tight.  The  reason for this 
is that, while this  method checks whether  there is a model  position that brings  each of the 
undistinguished  model  features  into  alignment  with  image  features  (along  with  all of the 
distinguished  features)  up to  the  error  bounds,  it  does  not check whether  there is a position 
that brings  all of the  counted  undistinguished  features  into  alignment  up  to  the  error  bounds. 

A competing  technique for feature  matching  and  model  extraction is based on the Hough 
transform.  This  method also generates  hypothetical model  positions  solutions  using  minimal 
information,  but  rather  than  testing each solution  separately,  the  testing is performed by 
analyzing  the  locations of the  solutions in the space of possible  model  positions (or poses). 
This is often,  but  not always,  accomplished through a histogramming  or  clustering  procedure. 
The large clusters  in  the pose space  indicat.e  good  model  fits. ’tve call  techniques that examine 
the pose  space for sets of consistent  matches  among  all  hypothetical  matches Hough-based 
methods, since they derive  from the Hough transform [28, 361. While  these  techniques  are 
less sensitive to noise in the  features,  they  are  prone  to  large  computational  and  memory 
requirements, as well as  the  detection of false positive  instances [20], if the pose space  analysis 
is not  careful. 

In  this  paper, we describe  a  technique that combines the  generate-and-test  and Hough- 
based methods in a way that draws  ideas  and  advantages  from  each,  yielding a method 
that improves upon  both. Like the generate-and-test  method,  (partial)  solutions  based on 
distinguished  features  are  generated for further  examination. However, each such  solution is 
under-constrained and Hough-based methods  are used to  determine  and  evaluate  the  remain- 
der of the  solution.  This allows both  randomization  to be used to reduce the  computational 
complexity of the  method  and  error  propagation techniques to  be used in  order to  bet- 
ter  extract  the  relevant models. We call this  technique RUDR (pronounced  “rudder”): for 
Recognition  Using  Decomposition  and  Randomization. 

First,  it is shown that  the problem  can  be  treated  as  many  subproblems, each of which 
is much simpler than  the original  problem. We next  discuss  various methods by which the 
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subproblems  can  be  solved.  The  application of randomization  to  reduce  the  number of sub- 
problems that must  be examined is then  described.  These techniques yield efficiency gains 
over conventional  generate-and-test  and Hough-based methods.  In  addition,  the  subdivi- 
sion of the  problem allows us to  examine a much smaller  parameter  space in each of the 
subproblems  than  in  the original  problem and  this allows the  error  inherent  in  localization 
procedures to  be  propagated  accurately  and efficiently in the  matching process. 

This  method  has a large  number of applications. I t  can  be  applied to essentially  any 
problem  where  a  model  is fit to  cluttered  data  (i.e.  with  outliers or multiple  models  present). 
We discuss the  application of this  method  to  object  recognition, curve detection,  robust 
regression, and  motion  segmentation. 

The work described  here is a generalization of previous work on  feature  matching  and 
model  extraction [44, 45, 471. Similar  ideas have been used by other researchers. A simple 
variation of this  method  has been applied to curve  detection by Murakami  et  al. [43] and 
Leavers [35]. In  both of these  cases, the problem  decomposition was achieved through  the 
use of a single  distinguished  feature  in  the  image for each of the  subproblems. We argue 
that  the  optimal performance is achieved when the  number of distinguished  features is one 
less than  the  number necessary to fully define the  model  position in the errorless  case. This 
has two beneficial effects. First,  it reduces the  amount of the  pose  space  that  must  be 
considered in each problem  (and  the  combinatorial explosion in the  sets of undistinguished 
features  that  are  examined). Second, it allows a more effective use of randomization  in 
reducing  the  computational complexity of the  method. A closely related  decomposition  and 
randomization  method  has been described by Cass [12] in the  context of pose  equivalence 
analysis. He uses a base match to develop an  approximation  algorithm for feature  matching 
under  uncertainty. 

2 Related research 
In  this  section, we review  previous  research on generate-and-test  and  Hough-based  algorithms 
for model  matching. 

2.1 Generate-and-test  methods 
The basic idea in generate-and-test  methods is to iteratively  generate  hypothetical  model 
positions  in  the  data  and  test  the  positions.  The  hypothetical  model  positions  are often 
generated by conjecturing  matches betweer, the  model  and a set of features  in  the  data 
and  then  determining  the model  positions  such that  the model is aligned with  the  data 
features.  These  positions  are  then  tested by comparing  the  position of the  model  against  the 
remainder of the  data.  One common  measure of the quality of the  position is the  number of 
data  features  that  agree we11 with  the model at  this position. 

The first use of the generate-and-test  strategy for recognition  in computer vision was in 
Roberts’  seminal  thesis [52]. Roberts used sets of point  matches between an object  and  an 
image to  determine  the  best  least-squares fit of the model to  the  image  under rigid motion 
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and  perspective  projection. If the fit was good enough  then  the  rest of the  model was 
transformed  and  compared  to  the image  in an  attempt  to ensure that  the  match was correct. 
Heuristic  methods were used to  determine which point  sets to compare. 

Fischler and Bolles described  the RANSAC (for  RANdom SAmple  Consensus)  technique 
[19]. They  suggested  that, when  solving  for the model  position,  it is best  to use the  minimum 
number of data  features necessary to yield a finite set of solutions  (assuming  no  error).  This 
reduces the likelihood that one of the  data features  does  not belong to  the  model, since there 
may  be  outliers or multiple  models  present.  They also used a randomization  technique, 
where sets of data  features  are  sampled  randomly  until  the  probability of at least  one  sample 
being  correct is sufficiently  large,  assuming that  the model is actually  present  in  the  image. 
The  application of these  techniques to pose determination from  point  features is the  primary 
subject of [19]. These  techniques  have  also been applied to curve and  surface  detection [8]. 

An alternative  to  random  sampling of the sets of data features is the use of features  that 
are  distinctive in  some manner. Bolles and  Cain [7] capitalize on such distinctive  features in 
their local-feature-focus method. Lowe [41] finds sets of features that  are  distinctive based 
on their  proximity,  parallelism, or collinearity  (implying that  they  are more likely to belong 
to a single model).  There have been many  similar  techniques for grouping feature  sets  that 
are  similarly  distinctive (a review can be found in [57], also see [as]). 

A technique that can  be used to speed up  generate-and-test  methods,  in  cases  where  the 
model  consists of a set of discrete  features, is feature  set  indexing (e.g. [13, 33, 34, 4’21). 
These  methods  preprocess  the  set of model  features  such that, at run-time,  the  sets of 
model  features  that could  have yielded a set of image  features  can  be  determined quickly. 
The  method of recognizing an  object  using  an election [34] allows the  testing  step  to  be 
performed efficiently as follows. Given a set of image features  that  are  conjectured  to  belong 
to  an  object  (denote  this  the basis  set), form  all of the  sets of image  features that include 
the basis set  and one additional  feature  and index the  sets of model  features  that could 
feasibly match  them.  Then,  count  the  number of votes for each possible  basis set by from 
the indexed sets of model  features.  This  simultaneously measures the  quality of matching 
each possible  basis set in the  model  to  the given image  basis  set in  terms of the  number of 
additional  image  features  that  are aligned well  by the  match of the  image  basis  set  to  the 
model  basis  set. 

One  problem that simple  generate-and-test  methods  can have is that noisy data  features 
can  cause errors in the  initial  position  estimate  that  result in poor  model detection. .4n 
alternative  to  simply  testing  the  model  position  corresponding  to some  hypothesized data 
set is to  iteratively refine the  model  position  as  additional  data  features  are  conjectured  to 
belong to  the model [3, 17, 411. This  can significantly  improve the overall match,  particularly 
when the  initial  data  set is noisy, although  it will not  help if the  initial  matching  contains 
an  outlier.  Another  technique  that  can  be used if the localization  error  can  be  modeled is 
to carefully propagate  the effects of localization  error in the  testing  step [l, 211. While this 
technique will not miss instances of a model that satisfy some error  criterion,  it will find 
instances that  do  not  satisfy  the  criterion. 

In  addition  to  the  applications  described above, generate-and-test  techniques have been 
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applied to  many  other  applications, such as  least  median of squares  regression [55], object 
recognition  [26], extraction of geometric  primitives  such  as  curves  and  surfaces  [54],  and 
motion  segmentation [66]. 

2.2 Hough-based  methods 
Parameter  space  analysis  techniques can  be traced back to  the  patent of the  Hough  transform 
[22]. The Hough transform was initially used to  track  particle curves in  bubble-chamber 
imagery.  Subsequent work  by Rosenfeld [53] and  Duda  and  Hart [15] played a substantial role 
in popularizing  the Hough transform in the  image processing and  computer vision community 
and  it  has since  become  an  established  technique for the  detection of curves and  surfaces,  as 
well as  many  other  applications. Surveys of Hough transform  techniques  and  applications 
can be  found in [28, 361. The basic  idea is that each data  feature  can  be  mapped  into a 
manifold  in the  parameter  space of possible curves (or  model  positions,  in  general).  Typical 
implementations consider a quantized  parameter  space  and  count  the  number of data  features 
that  map'to a manifold  intersecting each cell in the  quantized space.  Cells with  high  counts 
correspond to curves  present  in the image. 

Ballard  demonstrated  that  the Hough transform  can  be generalized to  detect  arbitrary 
shapes (composed of discrete  points)  in  images [4]. This  method  determines a mapping 
between  image features  and  an  accumulator for a  parameter  space  describing  the possible 
positions of the  object.  When each  image feature  has been mapped  into  the  parameter  space, 
instances of the  shape yield local maxima in the  accumulator.  Ballard used pixel orientation 
information to speed  up  the  algorithm  and improve  accuracy. Ballard  suggested that  pairs of 
features could  be mapped  into  the  parameter  space  to  reduce  the effort in mapping  features 
into  the  parameter  space,  but considered this infeasible for most cases. 

Relatively  recent work has  capitalized on the  ides of ma2ping  multiple  features  into  the 
parameter  space [5, 10, 35, 681. The primary  benefit that is gained is that only  those  features 
sets  that  are  large enough to  map  to a single point  (or a finite  set of points) in the  parameter 
space  are  examined. A drawback is that  there  are  many  such  sets of features. An additional 
technique that has proven useful for improving  the efficiency of the Hough transform is 
randomization  [5, 32, 35, 681. 

Generalized Hough transform techniques have been applied to many  object recognition 
problems  (and  these  techniques  are  sometimes called pose clustering  in  this  context) [14, 38, 
60, 61, 62, 63,  64, 671. Most of these  applications  consider  feature  sets that  map  to single 
points  in  the  parameter  space of possible model  transformations  and  then  perform some 
clustering  method  to  detect  objects, often  multi-dimensional  histogramming. A number of 
alternative  methods for analyzing  the  parameter  space have been proposed.  See, for example, 
[27, 37, 491 for techniques to improve the  standard Hough transform.  Some  interesting 
methods  that have been  applied to  object  recognition  can  be  found  in  [9, 11, 561. 

Hough-based  techniques have been applied to  many  applications,  such  as curve matching 
[31, 671, segmentation of moving objects [6, 18,  30, 51, 651, data compression  [59], and 
determination of viewing distance  and angle of gaze  from  stereo disparity [SO]. 
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3 General  problem  formalization 
The class of problems that we attack using RUDR are  those  that  require a model  to  be fit 
to a set of observed data  features, where a significant portion of the observed data may  be 
outliers  (in  fact,  the  model may contain  outliers as well) or there  may  be  multiple models 
present in the  data.  These problems can, in  general, be formalized as follows. 

Given: 
0 D : The  data  to  match.  This  data consists of a set of features  or  measurements, {&, ..., dd), 
that have been  extracted, for example,  from  an  image. For simplicity, we assume  that  all 
of the  data  features  are of a single  geometric  class,  such  as  points  or  segments, but  this 
restriction  can  be  removed. 
0 A4 : The  model  to  be fit. This  model may  be a set of distinct  features  as  is  typical in 
object  recognition,  or it may  be a parameterized  manifold  such  as a curve or  surface,  as  in 
geometric  primitive  extraction  and  robust regression. The only constraint  on  the  model is 
that we must  be  able  to  determine  hypothetical  model  positions by matching  the  model  with 
data features. 
0 ‘7- : The possible  positions  or  transformations of the model. We use r to  denote  individual 
transformations in this  space. 
0 A ( M ,  D ,  T ,T ,  0) : A binary-valued  acceptance  criterion that specifies whether a transfor- 
mation, r ,  satisfactorily  brings  the  model  into  agreement  with a set of data  features, D E D. 
We allow this  criterion to be a function of the full set of data  features  and  the  set of trans- 
formations to  allow the  criterion  to select the single best  subset of data  features  according 
to some criterion or to take  into  account global matching  information. 

Determine  and  report: 
r) A11 maximal  sets of data features, D E D ,  for which there is a transformation, r E 7, 
such that  the acceptance  criterion, A ( M ,  D ,  7,  7 ,  D ) ,  is satisfied.  (Only  the  maximal  sets 
are  reported so that  the  subsets of each maximal  set need not  be  reported.) 

This  formalization is very general.  Many  problems  can be formalized  in this  manner, in- 
cluding  object  recognition,  geometric  primitive  extraction,  motion  segmentation,  and  robust 
regression. 

A useful  acceptance  criterion is based  on bounding  the  fitting  error between the model 
and  the  data. Let C ( M ,  6,r) be a function that  determines  whether  the specified position 
of the  model  fits  the  data  feature 6 (e.g.  up to a bounded  error). We let C ( M ,  6,r) = 1, 
if the  criterion is satisfied,  and C ( M ,  6, r )  = 0, otherwise. The model is said to be  brought 
into  alignment  with a set of data  features, D = {&, ..., 6,) up  to  the  error  criterion, if all of 
the  individual  features  are  brought  into  alignment: 

The bounded-error  acceptance  criterion specifies that a set of data  features, D = (61, .. . ,  &}, 
should be reported, if the  cardinality of the  set  meets  some  threshold (z 2 c), there  is  a 
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position of the  model  that satisfies (l), and  the  set is not a subset of some  larger  set that is 
reported. 

While  this  criterion  cannot  incorporate global information, such as mean-square-error  or 
least-median-of-squares, RUDR is not  restricted to using this  bounded-error  criterion.  This 
method  has  been  applied  to least-median-of-squares regression with excellent results [44]. 

Example 1 As a running  example, we will consider the  detection of circles in two-dimensional 
image data. For this case, our  model, M ,  is simply  the  parameterization of a circle, 
( x  - + (y - Y , ) ~  = r2,  and  our  data, D, is a set of image  points.  The  space of possible 
transformations is the space of circles, 7 = [ x c ,  yc, 7-1 . We use a bounded-error  acceptance 
criterion  such that a point is considered to  be on the circle if - + (y - yc)2 - < e. 
We will report  the circles that have C,(M, Si,  T )  > m .  In  other words, we search for 
the circles that have half of their  perimeter present  in the image. 

T 

Example 2 For a second  example, we will discuss  object  recognition under  similarity 
transformations.  Here,  our  model consists of a  set of model  points  in two dimensions  and 
our data consists of similar  points  extracted  from  an  image. We consider all  similarity 
transforms of the model  (translation,  rotation,  and  scale).  Our  acceptance  criterion will 
be  based  on the  fraction of the  model  points  that  are aligned with  extracted  image  points 
up  to  the  bounded  error E ,  so we will report  the  instances where zzl C,(M, Si,  T )  > fm.  
(This makes an  assumption  that correspondence  between  image points  and  model  points is 
one-to-one, but it is simple to remove this  assumption in  practice [24].) 

4 Approach 
Let  us  call the  hypothetical  correspondence between a set of data features  and  the  model 
a matching. The generate-and-test  paradigm  and  many  Hough-based  strategies solve for 
hypothetical  model  positions using  matchings of the minimum  cardinality  to  constrain  the 
model  position up  to a finite  ambiguity  (assuming errorless features). We call the  matchings 
that contain  this  minimal  amount of information the minimal  matchings and we denote 
their  cardinality k .  We consider two types of models. One  type of model  consists of a set 
of discrete  features  similar to  the  data features. The  other is a parameterized  model such 
as  a  curve  or  surface. When  the  model is a set of discrete  features,  the  minimal  matchings 
specify the  model  features  that  match each of the  data features  in  the  minimal  matching 
and we call  these explicit matchings. Otherwise,  the  data  features  are  matched  implicitly to  
the  parameterized  model  and we thus call these implicit matchings. 

In  the  generate-and-test  paradigm,  the model  positions  generated  using the  minimal 
matchings  are  tested by determining how  well the tlndistinguished features  are fit according 
to  the  predicted  model  position.  In Hough-based methods,  it is typical  to  determine  the 
positions of the  model  that align each of the  minimal  matchings  and  detect  clusters of these 
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positions  in  the  parameter  space  that describes the set of possible  model  positions', but 
other pose  space  analysis  techniques  can  be used (e.g. [9, 121). 

The  approach  that we take  draws  upon  both  generate-and-test  techniques  and Hough- 
based  techniques. The underlying  matching  method may be any  one of several  pose  space 
analysis  techniques  in the Hough-based method (see Section 4), but unlike previous  Hough- 
based methods,  the  problem is subdivided  into  many  smaller  problems,  in which only a 
subset of the  minimal  matchings is examined.  When  randomization is applied to selecting 
which subproblems  to solve, a low computational complexity  can be achieved with a low 
probability of failure. 

The key to  this  method  is  to  subdivide  the  problem  into  many  small  subproblems, in 
which a distinguished matching of some cardinality g < k between data  features  and  the 
model is considered.  Only  those  minimal  matchings that contain the distinguished  matching 
are  examined  in  each  subproblem  and  this  constrains  the  portion of the pose space  that 
the  subproblem  considers. We could consider each possible  distinguished  matching of the 
appropriate . -  cardinality  as a subproblem,  but we shall see that  this is not necessary  in practice. 

4.1 Problem equivalence 
Let's  consider the effect of this  decomposition of the problem on the  matchings  that  are de- 
tected by a system  using a bounded-error  criterion, C ( M ,  d ,  t ) ,  as  described  above. For now, 
we assume  that we have  some method of determining precisely those  sets of data  features 
that  should  be  reported  according  to  the  bounded-error  acceptance  criterion.  The impli- 
cations of performing  matching  only  approximately  and  the use of an  acceptance  criterion 
other  than  the  bounded-error  criterion  are discussed subsequently. 

Proposition 1: For any  transformation, 7 E 7,  the following statements  are  equivalent: 
1. Transformation r brings at least x data features  into  alignment  with  the  model up  to  the 
error  criterion. 
2. Transformation r brings at least (i) sets of data  features  with  cardinality IC into  alignment 
with the model  up  to  the  error  criterion. 
3. For any  distinguished  matching of cardinality g that is brought  into  alignment  with  the 
model up t o  the  error  criterion by r ,  there  are (E:;) minimal  matchings  that  contain  the 
distinguished  matching  that  are  brought  into  alignment  up  to  the  error  criterion by r. 

Proof : The proof follows from  combinatorics. We sketch the proof that (a) Statement 
1 implies Statement 2,  (b)  Statement 2 implies Statement 3; and  (e)  Statement 3 implies 
Statement 1. The  statements  are  thus equivalent. 

(a) From  Statement 1, there  are  at  least x data features  with C ( M ,  &,  r )  = 1. We can 
thus  form at least ( z )  distinct  sets of these data features  with  cardinality k .  E,ach such  set 
has nF==, C ( M ,  Si ,  r )  = 1. These  matchings  thus  contribute at least ( E )  to  the  sum. 

IEarly Hough  transform  strategies  mapped single features  into manifolds in the  parameter  space,  but 
further work in Hough transforms  has improved on these techniques by mapping  sets of data features  into 
points  in the  parameter  space [5, 10, 35, 681. 
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(b) To form  the ( E )  sets of data features that  are brought  into  alignment  with  the  model, 
we must  have x individual data features  satisfying C ( M ,  Si,  r )  = 1. (If there were y < x such 
features  then we could  only  form (i)  minimal sufficient matchings  satisfying  Equation (I).) 
Choose  any subset, G ,  of these  matches of cardinality g. Form  the (:I:) subsets of cardinality 
k - g that  do  not  include  any  feature in G .  Each of these  subsets  when  combined  with 
forms  a  minimal  sufficient  matching that is brought  into  alignment  up  to  the  error  criterion 
since  each of the  individual  features satisfies C ( M ,  6i, r )  = 1. 

(c)  From  Statement 3,  the g data features  in the distinguished  matching  are  brought  into 
alignment  up  to  the  error  criterion by 7 .  In  addition  there  must exist x - g additional  data 
features  that  are  brought  into  alignment  up  to  the  error  criterion by r to  form  the (E::) 
subsets of cardinality k - g that  are  brought  into  alignment  up  to  the  error  criterion by r. 
Thus, in total,  there  must  be g + x - g = x data  features  that  are  brought  into  alignment 
up  to  the  error  criterion by r. 

This  result  indicates  that as long as we examine  one  distinguished  matching that belongs 
to  each of the  matchings  that  should  be  reported,  the  strategy of subdividing  the  problem 
into  subproblems yields equivalent  results to examining  the  original  problem  as  long as the 
threshold  on  the  number of matches is set  appropriately. 

This  decomposition of the  problem allows our  method  to  be viewed as a class of generate- 
and-test  methods, where  distinguished  matchings  (rather  than  minimal  matchings)  are gen- 
erated  and  the  testing  step is performed  using a pose  space  analysis  method (such as clus- 
tering or  pose  space  equivalence  analysis)  rather than comparing a particular  model  position 
against  the  data. 

4.2 Optimal  cardinality 
While  distinguished  matchings of any  cardinality could  be  considered, we must  balance 
the  complexity of the  subproblems  with  the  number of subproblems  that  are  examined. 
Increasing the  cardinality of the  distinguished  matching is beneficial up  to a point. As the 
size of the distinguished  matching is increased, the number of minimal  matchings  that is 
examined  in each subproblem is decreased and we have more constraint  on  the  position of 
the  model.  The  subproblems  are  thus simpler to solve. 

By itself,  this  does  not  improve  matters,  since  there  are  more  subproblems to examine. 
However, since we use randomization  to  limit  the  number of subproblems that  are  examined, 
we can achieve a lower computational complexity by having  more  simple  subproblems  than 
fewer difficult ones.  On the  other  hand, when we reach y” = k ,  the  method becomes equi.calt+nc 
to a generate-and-test  technique  and we lose both  the benefits  gained through  the Hough- 
based  analysis of the pose  space  and  the  property that  the subproblems  become  simpler 
with  larger  distinguished  matchings. We thus use distinguished  matchings  with  cardinality 
g = k - 1 .  
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4.3 Approximation  algorithms 
For practical  reasons, we may  not wish to use an  algorithm  that  reports  exactly  those 
matchings that satisfy the error  criterion, since  such algorithms  are often time  consuming. 
In  this case, we cannot  guarantee  that examining a distinguished  matching that belongs to 
a solution that should  be  reported will result  in detecting  that  solution. However, empirical 
evidence  suggests that  the  examination of these  subproblems yields superior  results when an 
approximation  algorithm is used [45], owing to failures that occur  in the  examination of full 
problem. 

We can  also use these  techniques  with  acceptance  criteria  other than  the bounded-error 
criterion.  With  other  criteria,  the  proposition is no longer always true,  but if an approxima- 
tion  algorithm is used to  detect good  matchings,  examination of the  subproblems  often yields 
good  results. For example,  an  application of these  ideas to least-median-of-squares regres- 
sion has yielded an  approximation  algorithm  that is provably accurate  with  high  probability, 
while previous approximation  algorithms  do  not have this  property [44]. 

Example 1 For our circle detection  example, k = 3,  since three  points  are sufficient to 
define a circle in the noiseless case. The above  analysis  implies that,  rather  than examining 
individual  image  features,  or  all  triples of features, we should examine trials  (or  subproblems) 
where only  the  triples  that  share some  distinguished  pair of features  in  common.  Multiple 
trials  are  examined  to  guard  against missing a circle. 

Example 2 For object  recognition  under  similarity  transformation, we have k = 2, since 
two feature  matches  are sufficient to  determine  the  model  position.  In  this case, we examine 
trials where the  pairs of image  points  are  examined  that  share a single  distinguished  point 
in  common. For each such pair, we consider each pair of model poirts as a possible match. 

5 Solving the subproblems 
Now, we must use some  method  to solve each of the subproblems that  are  examined. We 
can use any  method  that  determines  the  number of matchings of a given cardinality  can  be 
brought  approximately  into  alignment  with  the model at  a particular  position. 

5.1 Hist  ogramrning 
The simplest  method  for solving the  subproblems is to use multi-dimensional  histogramming 
step in  order to  locate  large  clusters in the pose space.  In  this  method,  the  parameter space 
is quantized  and  a  counter is maintained for each cell in the quantized  space.  Each  matching 
is mapped  into  a manifold  in the  parameter space and  the  counter  associated  with each 
parameter  space cell that intersects that manifold  is  incremented. Clusters in the  parameter 
space  are  found by locating cells with  high  counts. The  primary reason this  method is 
popular is that  it requires  linear time in the  number of matchings that  are considered, while 
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most  other  methods  are  more complex.  While this  method is fast if the  parameter  space 
is not  too  large  and yields good  results for many  applications,  it  does  not  propagate  the 
effects of error  accurately,  it  introduces  quantization effects, and  it is time  consuming for 
large  parameter spaces. 

To  reduce the problem of a large  parameter  space,  hierarchical  decompositions of the 
parameter  space have often been used [14, 27, 35,  37, 38, 62, 641. This is usually  performed 
through a coarse-to-fine  search of the  parameter  space or by decomposing the  parameter 
space  along the  orthogonal axes. Such decompositions of the  parameter  space allow the 
initial  steps  to  be  performed  using only a few cells in the  transformation  space.  Those  that 
cannot  lead  to a large  cluster  are  eliminated  and  the  rest  are  examined in finer detail. 

The problem of error  propagation is more difficult to  handle  with  this  technique. For 
complex  problems, it can  become  problematic to  detect  the  clusters  without also detecting a 
significant number of false positives [20]. One  possibility is to  discretize the pose space finely 
and  to increment the  counter for each cell that is consistent  with each minimal  matching  (up 
to some error  bounds) (see, for example, [58]). However, this requires much computation. 

5.2 Pose constraint methods 
Alternatively,  recently  developed pose equivalence analysis  techniques  developed by Breuel 
191 and  Cass [12] can  be  applied that allow localization  error to be  propagated  accurately. 
The basic idea of these  methods is that each match between a model  feature  and a data 
feature yields  some constraints  on  the volume of the pose space that must  be satisfied  in 
order for the  features  to  be  aligned  up  to some  error  bound.  These  constraints  divide  the 
pose space  into equivalence  classes,  within which the  same  sets of features  are  brought  into 
correspondence. A search of the pose space is performed to  locate  the  positions  that  satisfy 
the  maximum  number of constraints. 

Cass [12] searches the pose space by examining the  arrangement of the Constraints  using 
computational  geometry  techniques. Significant speedup is achieved through  the use of an 
approximation  algorithm.  Breuel uses a method  that  adaptively divides the pose space, 
pruning cells that  are  not  consistent  with a sufficient number of the  constraints.  Unpruned 
cells are  divided  recursively  until  they  are  small  enough to accept as valid model  positions. 
Breuel’s experiments  indicate  that his techniques  can operate in  linear  expected  time  in  the 
number of matchings, so we can, in  general,  perform this  step efficiently. 

Both of these  techniques  can  be used in conjunction  with  our  approach  to  subdividing 
the  problem.  In  the  method of Cass, we would examine  much less of the pose space  in  each 
trial, since  only  a few  of the pose equivalence classes are  consistent  with each distinguished 
matching.  In Breuel’s method,  k-tuples  are used to form closed constraint regions  in the 
pose space, so our  approach would examine  only the  k-tuples  that  contain  the  distinguished 
matching. 
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5 .3  Subspace  error  propagation 
In  our  method, only a small  portion of the  parameter  space is examined in each subproblem. 
If it is assumed  that  there is no error  in the  data features in the  distinguished  matching, 
then each subproblem considers  only a sub-manifold of the  parameter  space.  In  general, if 
there  are p transformation  parameters  and each feature  match yields b constraints on the 
transformation,  then a subproblem  where the distinguished  matchings  have  cardinality g 
considers  only a ( p  - gb)-dimensional  manifold of the  transformation  space  in  the errorless 
case2.  This allows us to  parameterize  the  sub-manifold  (using p - g b  parameters)  and  perform 
analysis  in  this lower dimensional  space. A particularly useful case is when the  resulting 
manifold has only  one  dimension  (i.e. it  is a curve).  In  this case, the  subproblem  can  be 
solved very simply by parameterizing  the  curve  and finding  positions on the curve that  are 
consistent  with  many  minimal  matchings. 

When  localization  error  in the  data  features is considered, the  subproblems  must (at least 
implicitly)  consider a larger  space than  the manifold  described  above. The  subproblems  are 
still much easier to solve. A technique that is useful in  this case  is to project  the  set 
of transformations  that  are  consistent  with a minimal  matching up  to  the error  criterion 
onto  the  manifold  that  results in the errorless case and  then  perform  clustering only  in the 
parameterization of this manifold  as  discussed  above [47]. 

This  method  slightly  overestimates  the  total  number of consistent matches, since  matches 
that  are consistent  in  the  projections may not  be in the full pose space. However, significant 
errors  are unlikely, because  the regions of the pose  space  consistent  with  each  minimal 
matching  do  not  deviate  far  from  the manifold  corresponding  the  errorless  case,  except  in 
extreme  circumstances (cases that  are  nearly  degenerate). 

Example 1 For circle detection,  the circle positions that share a pair of points lie on a 
curve  in the pose space.  (The  center of the circle is always on the  perpendicular bisector 
of the two distinguished  points.) We parameterize  the  positions  using  the signed distance 
d from the center of the circle to  the  midpoint between the  distinguished  points (positive 
if above,  negative if below).  This yields a unique  descriptor for every circle containing 
the  distinguished  points. For each triple  that is considered, we can  project the pose space 
consistent  with  the  triple  onto  the  parameterization by considering which centers  are possible 
given some  error  bounds  on  the  point  locations [47]. We determine if a circle is present  in 
each trial by finely discretizing d and  performing  a  simple Hough transform  variation, where 
the  counter for each bin is incremented for each triple  that is consistent  with  the  span 
represented by the  counter.  Figure 1 gives an  example showing how the  positions  that  are 
consistent  with a minimal  matching  are  found.  Peaks in the  accumulator  are  accepted if 

'This  is not always  true. For example, consider the case where the  data  and  the model consist of sets of 
three-dimensional  points and  the  transformation  space is the sis-dimensional  space of rigid motions. E,ach 
individual match between  a data point  and  a  model  point yields three  constraints  on the posicion of the 
model. However, a pair of such  matches yields only five constraints, since the  rotation  around  the segment 
joining the points is unconstrained.  In  this  case, the additional  constraint lies in the  distance between the 
points, which must  be the same in both  the model and  the  data. 
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Figure 1: We determine  bounds on the position of the center of a circle passing through  three 
points (up  to  the localization error) by examining the  range of possible perpendicular  bisectors for 
the segments  between the  points. 

they  surpass  some  predetermined  threshold. 

Example 2 In  the recognition of point  sets  under  similarity  transformations,  the  positions 
consistent  with a distinguished  matching between a model  point  and  an  image  point lie in 
a two-dimensional  manifold  in the four-dimensional  pose  space. If  we translate  both  the 
model  and  the  image  to have their origin at the  distinguished  point,  then  the  translation of 
the  model is fixed  by the  distinguished  matching  (in  the errorless  case) and  the search  can 
be  restricted to  rotation  and scale. In  the  subspace, we can  determine  the  area  consistent 
with each minimal  matching  containing  the  distinguished  matching  and use of a variation of 
the Hough transform  to  detect  object  locations.  Alternatively,  variations of the  divide-and- 
conquer  pose  space  techniques  can be used [9, 251. 

6 Randomization and complexity 
X deterministic  impiementation of r,hese ideas esamines each possible  distinguished  matching 
with  the  appropriate  cardinality.  This requires O ( d )  time, where n is the  number of possible 
matches  between a data  feature  and  the model. When explicit matchings  are  considered, 
n = m d ,  where m is the  number of model  features  and d is the  number of data features.  When 
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implicit  matchings  are  considered, n = d .  Such a deterministic  implementation  performs 
much redundant work. There  are  many  distinguished  matchings  that  are  part of each of the 
large  consistent  matchings that we are  seeking. We thus find each matching  that  meets  the 
acceptance  criterion  many  times (once for each  distinguished  matching that is  contained in 
the  maximal  matching). We can  take  advantage of this  redundancy  through  the use of a 
common  randomization  technique  to  limit  the  number of subproblems  that we must consider 
while maintaining a low probability of failure. 

Assume that some  minimum  number of the image  features  belong to  the  model.  Denote 
this  number b. Since our  usual  acceptance  criterion is based  on counting  the  number of image 
features  that  belong  to  the  model, we can allow the  procedure  to fail when too few image 
features  belong  to  the  model.  Otherwise,  the  probability  that some set of image  features  with 
cardinality g = I% - 1 completely belongs to  the  model is approximately  bounded by ($) . 
If  we take t trials  that select sets of IC - 1 image  features  randomly,  then  the  probability  that 
none of them will completely  belong to  the model is: 

k-1 

Setting  this  probability below some arbitrarily  small  threshold (pt < y) yields: 

Now, for  explicit matches, we assume that some  minimum  fraction fe of the  model fea- 
tures  appear in the  image.  In  this case, the  number of trials necessary is approximately 
( f " ) ""  In $. For each trial, we must  consider matching  the  set of image  features  against 
each  possibly matching  set of model features, so the  total  number of distinguished  match- 
ings that  are considered is approximately (?) ( k  - l)! In $. Each explicit  distinguished 
matching requires O(md) time  to process, so the overall time  required is O(mdk).  

For implicit  matches, we may  assume that each significant  model in  the  image comprises 
some minimum  fraction fi  of the image features.  The  number of trials necessary to achieve 
a probability of failure below y is approximately fil""ln $,  which is a constant  independent 
of the  number of model  or  image  features. Since each trial can  be solved in O ( d )  time,  the 
overall time  required is O(d) .  

Note  that  the complexity  can  be  reduced further by performing  subsampling  among 
the  minimal  matchings considered in each trial.  Indeed, O(1) complexity is possible  with 
some assumptions  about  the  number of features  present  and  the  rate of errors  allowable [5]. 
We have not found this  further Complexity reduction to  be necessary in our  experiments. 
Xowever, it  may be usefill when the number of iinage  features is very large. 

Grouping techniques  can also be used to improve the  computational  complexity of the 
algorithm. If  we have some method  that  can  determine  feature  sets  that  are  more likely to 
belong to  the  same  model, we can use these  as  a  set of distinguished  features  in  the  image. 

k-1 
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Such method  can be used to reduce the likelihood of a false positive  match  in  addition  to 
reducing the  computational complexity [46]. 

Example 1 Our circle  detection  case uses implicit  matchings. If we assume  that each 
circle that we wish to  detect comprises at least fi = 5% of the  image  data  and require that 
the  probability of failure is below y = O . l % ,  then  the  number of trials necessary is 2764. 
Each  trial considers the  remaining d - 2 image  features.  Note  that  techniques considering 
all  triples will surpass  the  number of triples  considered  here  when d > 53. 

Example 2 Object  recognition uses explicit  matchings. For this  case, we may wish to 
locate each instance of an  object  (with  probability 0.999) where at least 75% of the  object 
appears in the image. If the  model consists of  20 feature  points  and  there  are 60 features in 
the image,  then we should  examine 28 distinguished  points  in  the  image. For each  such point, 
we consider  each of the model  features as a possible match  and  then  perform recognition  in 
the given subspace. 

7 Comparison with previous techniques 
This  section gives a  comparison of the  RUDR  approach  with previous generate-and-test  and 
Hough-based  techniques. 

Deterministic  generate-and-test  techniques require O(n"') time  to  perform  model ex- 
traction in  general,  since  there  are O(n') minimal  matchings  and the  testing  stage  can  be 
implemented O(n)  time.  This  can often  be  reduced  slightly through  the use of efficient  ge- 
ometric  searching  techniques  during  the  testing  stage (e. g. [39]). RUDR yields  a superior 
computational  complexity  requirement.  When  randomization is applied to  generate-and- 
test  techniques,  the  computation complexity becomes O(md"'j (or  slightly  better  using 
efficient geometric  search) for explicit  matches and O(d)  for implicit  matches.  RUDR  yields 
a superior  computational  complexity for the case of explicit  matches and, while the  generate- 
and-test  approach  matches  the  complexity for the case of implicit  matches,  RUDR  examines 
less subproblems by a constant  factor  (approximately i) and is thus  faster  in  practice. 

In  addition, previous generate-and-test  techniques  are  inherently less precise in the prop- 
agation of localization  error. The basic  generate-and-test  algorithm  introduces false positives 
unless care is taken to  propagate  the  errors  correctly [a, 211, since error in the  data  features 
leads to error  in  the  hypothetical  model pose and  this  error causes  some of the models to  be 
missed as a result of a poor fit. On  the  other  hand, when error  propagation  is used, false 
positives are  introduced.  The  techniques ensure that each of the  undistinguished  features 
can be separately  brought  into  alignment  (along  with  the  distinguished  set)  up  to some  error 
bounds by a single  model position,  this  position  may  be different for each such feature  match. 
It does not  guarantee  that all of the  features can be brought  into  alignment up to  the  error 
bounds by a single  position  and  thus  causes false positives to be found. 
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Hough-based methods  are  capable of propagating localization  error  such that  neither false 
positives nor false  negatives  occur  (in  the sense that only  matchings  meeting the  acceptance 
criterion  are  reported) [9, 121. However, previous  Hough-based methods have had  large 
time  and  space  requirements.  Deterministic Hough-based  techniques that  examine  minimal 
matchings  require O(nk)  time  and considerable  memory [45]. 

Randomization  has  been previously  applied to Hough transform  techniques [5, 32, 35 ,  681. 
However, in  previous  methods,  randomization  has  been used in a different manner  than  it is 
used here. While  our  approach  examines all of the  data in each of the  subproblems,  previous 
uses of randomization  in Hough-based methods  subsample  the overall data  examined,  causing 
both false positives  and false negatives to occur as a result.  While  false  negatives  can  occur 
due  to  the use of randomization in the  our  approach,  the  probability of such  an  occurrence 
can be set  arbitrarily low. 

Our  method  draws  the  ability  to  propagate  localization  error  accurately  from Hough- 
based methods  and combines it  with  the  ability  to  subdivide  the problem into  many  smaller 
subproblems  and  thus  reap  the full benefit of randomization techniques. The  result is a 
model  extraction  algorithm  with  superior  computational complexity to previous  methods 
that is also  robust  with respect to false positives and false negatives. 

All of the techniques  considered so far have been  model-based methods.  The  primary 
drawback to such  techniques is a  combinatorial  complexity that is polynomial  in  the  number 
of features,  but  exponential in the complexity of the pose space  (as  measured by k ) .  This 
can  be  subverted  in some cases by assuming that some fraction of the  data  features arises 
from the  model  (this  shifts  the base of the exponent to  the required fraction). An alternative 
that can be useful in  reducing  this  problem is the use of grouping  or  perceptual  organization 
methods  that use data-driven  techniques  to  determine  features  that  are likely to belong to 
the  same  model  (for  example, [29, 401). In cases where  models  can be identified by purely 
data-driven  methods,  such techniques  are likely to  be  faster  than  the  techniques  described 
here. However, work has shown the even imperfect  feature  grouping  methods  can  improve 
both  the  complexity  and  the  rate of false positives in  the  RUDR  method [46]. 

There  are  some  situations where RUDR  can  not be applied effectively. If a  single data 
feature is sufficient to  constrain  the  position of the  model,  the  RUDR  problem  decomposition 
will not  be  useful. In  addition,  the techniques we describe will be of less value is when there 
is a small  number of features in the  image.  In  this case, the  randomization may not yield 
an  improvement in the  speed of the  algorithm. However, the  error  propagation benefits will 
still  apply. 

8 Applications of RUDR 
RUDR has  been  applied to several  problems. YFe review the  important  aspects of these 
applications  here  and discuss additional aretis where RUDR can be applied. 
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8.1 Extraction of geometric primitives 
As previously  discussed,  the  Hough  transform is a well known  technique for geometric  prim- 
itive extraction [2S, 361. The application of RUDR to  this  method improves the efficiency 
of the  technique, allows the  localization  error  to  be  propagated  accurately,  and  reduces  the 
amount of memory  that is required [47]. 

Consider the case of detecting curves  from feature  points in  two-dimensional image  data. 
If  we wish to  detect curves  with p parameters,  then we use distinguished  matchings  consisting 
of p-1 feature  points,  since, in  general, p points  are required t o  solve for the curve parameters. 
Each  distinguished  matching  maps  to a one-dimensional  manifold (a curve)  in the  parameter 
space, if the  points  are errorless and in  general  position. Methods have  been  developed to 
map  minimal  matchings  with  bounded  errors  into  segments of this  curve for the case of lines 
and circles [47]. O(d)  time  and  space is required for curve detection  with  these  techniques, 
where d is the  number of data  points  extracted from the image. 

Figure 2 shows the results of using RUDR to  detect circles in a binary  image of an 
engineering  drawing. The results  are very good,  with  the  exception of circles found  with a 
low threshold  that  are  not  perceptually  salient. However, these circles meet  the  acceptance 
criterion  specified, so this is not a failure of the  algorithm. 

The  image  in  Figure 2 contains 9299 edge pixels. In  order to  detect circles comprising 
4% of the  image,  RUDR examines 4318 trials  and considers 4.01 X lo7 triples.  Contrast  this 
to  the 8.04 x 10l1 possible  triples. A generate-and-test  technique  using the  same  type of 
randomization  examines  1.08 x lo5 trials (1.00 x 10’ triples)  to achieve the  same  the  same 
probability of examining  a  trial where the  distinguished  features  belong  to some  circle, but 
will still miss circles due  to  the  error in the  features. 

The  robustness of this  technique for line  detection  has  been  compared  against  other 
methods  in a large  number of synthetic images.  Four methods were compared: 

1. The  RUDR  paradigm  with  propagated  localization  error. 

2. The  RUDR  paradigm  without  propagated  localization  error. 

3. A method  mapping  pairs of points  into  the  parameter  space,  but  without  decomposition 
into  subproblems. 

4. The  standard Hough transform. 

Figure 3 shows the  results. For each method,  the  probability of detecting  the single  correct 
line  segment  present  in  the  image is plotted versus the  probability of finding  a false positive 
(curved distractors were added to  the images) for varying levels of the threshold used to 
determine which lines are  detected. 

The  best  performance is achieved by the RUDR paradigm  with  propagation of localizs- 
tion  error  into  the  parameter  space.  Interestingly,  the RUDR paradigm fares  poorly when 
localization  error is not  propagated carefully. It is thus  crucial  to  propagate  the  localization 
into  the  parameter  space when using the  RUDR  paradigm . 
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Figure 2: Circle detection. (a) Engineering  drawing. (b) Circles found comprising 4% of the image. 
(c) Perceptually salient circles found comprising 0.8% of the image. (d) Insalient circles found 
comprising 0.8% of the image. 

8.2 Robust regression 
RUDR can  be  applied to  the problem of finding the least-median-of-squares  (LMS) regression 
line. We examine the problem of fitting  a line to  points in the  plane.  In  this case, a single 
distinguished  point is examined  in each trial (since  two points  are  required to  define a line). 
For  each trial, we determine  the  line  that is optimal  with respect to  the  median  residual,  but 
with  the  constraint  that  the line must  pass through  the  distinguished  point. 

I t  can  be shown that  the solution to  this  constrained  problem  has a median  residual that 
is no more  than  the  sum of the  optimal  median  residual  and  the  distance of the distinguished 
point  from  the  optimal LMS regression line [44]. Now, at least half of the  data  points  must lie 
no  farther  from  the  optimal regression line than  the  optimal  median  residual  (by  definition). 
Each  trial  thus  has a probability of at least 0.5 of obtaining a solution  with a residual no 
worse than twice the  optimal  median residual. The use c f  randomization implies that we need 
to  perform only a constant nurnber of trials to ac:?ieTyre 2- gcod sclzticn  with high  probability 
(approximately - log, 6 trials  are necessary to achieve an  error  rate of 6). 

Each  subproblem  (corresponding  to  a  distinguished  point)  can  be solved using  a  spe- 
cialized method based on parametric search  techniques [44]. This allows each  subproblem 
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Figure 3: Receiver operating  characteristic  (ROC) curves for line detection  generated using syn- 
thetic  data. 
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Figure 4: Robust regression examples. The solid lines are  the RUDR LMS estimate. The dashed 
. lines are  the PROGRESS LMS estimate.  The  dotted lines are  the least-squares  fit. 

to  be solved exactly  in O(n log2 n) time or  in O(n log n) time for a fixed precision  solution 
using  numerical  techniques.  These  techniques have also  been  extended to problems  in  higher 
dimensional  spaces. 

The complexity of our  method is superior to  the  best known exact  algorithms for this 
problem [16]. The  PROGRESS  algorithm [55] is a commonly used approximation  algorithm 
for LMS regression that is based  on the  generate-and-test  paradigm.  It requires O(n)  time. 
However, unlike  our algorithm,  this  algorithm yields no lower bounds  (with  high  probability) 
on  the  quality of the  solution  detected. 

Figure 4 shows two examples where RUDR,  PROGRESS,  and  least-squares  estimation 
were used to  perform  linear regression.  In  these  examples, we used 400 inliers  and 100 
outliers, both from  two-dimensional normal  distributions.  trial of the  RUDR  algorithm were 
considered,  and 50 trials of the  PROGRESS  algorithm. For both  examples, RUDR produces 
the  best fit to  the inliers. The least-squares fit is known to be  non-robust, so it is not 
surprising  that  it  fairs poorly. The  PROGRESS  algorithm  had difficulty, since, even in 50 
trials, it failed  generate  a  solution very close to  the  optimal  solution. 

8.3 Object  recognition 
The  application of RUDR  to  object recognition  yields an  algorithm  with O(mdk)  computa- 
tional  complexity,  where m is the number of model features, d is the  number of data features: 
and k is the  minimal  number of feature  matches  necessarv to  constrain  the  position of the 
model up to a finite  ambiguity  in  the  case of errorless fear;xes in general  position. 

We examine  the  rxognition of three-dimensional 6bjec:s using two-dimessional image 
data, for which k = 3. In each subproblem, we compute  the pose for each  minimal  matching 
containing  the  distinguished  matching using the  method of Huttenlocher  and  Ullman [26]. 
We then use a multi-dimensional  histogramming  technique that examines each axis of the 
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Figure 5 :  Recognition of occluded two-dimensional objects. (a) The corners  detected  in the image. 
(b) The  best  hypotheses found for the occluded objects  with the edges drawn  in. 

pose space  separately.  After  finding  the  clusters  along  some axis in the pose space,  the clus- 
ters of sufficient size are  then  analyzed recursively in  the  remainder of the pose space [45]. 
The poses for all  sets of points  sharing a distinguished  matching of cardinality k - 1 lie in a 
two-dimensional  subspace for this case.  Despite this, we perform the  histogramming in the 
full six-dimensional  space,  since  this  requires  little  extra  time  and  space  with  this  histogram- 
ming  method.  Feature  error  has been treated in an  ad  hoc  manner  in  this  implementation 
through  the  examination of overlapping  bins  in the pose space.  Complex  images  may  require 
a more thorough  analysis of the  errors. 

We can  also  apply  these  techniques to images in which imperfect  grouping  techniques 
have determined  sets of points that  are likely to derive  from the  same  object [46]. This 
allows a reduction in both  the  computational complexity and  the  rate of false positives. 

Figure 5 shows an  example where  RUDR was used to recognize occluded  two-dimensional 
figures by matching  feature  points.  The  partial occlusion of the  objects  and  the  distract- 
ing  features  from  other  objects  did  not prevent the  method from  recognizing the figures. 
Figure 6 shows an  example where this  approach  has  been  applied to  the recognition of a 
three-dimensional  object. 

8.4 Motion segmentation 
RUDR can  be used to perform motion segr:;sxation with any  technique for determining 
structure  and  motion  from  corresponding dr-it;? features in  multiple  images.  In  this  problem. 
we are given sets of data features  in  multiple  images. We assume that we know the  feature 
correspondences  between  images  (e.g.  from  a  tracking  mechanism),  but  not which sets of 
features  belong  to  coherent  objects. 
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(8) Figure 6: Three-dimensional object recognition. (a) Corners de ib) ected in the image. (b) Best 
hypothesis found. 

Say that we have an  algorithm  to  determine  structure  and  motion using k feature corre- 
spondences  in i images and  that  there  are d features for which we know the  correspondences 
between the images (see 1231 for  a review of such techniques). We examine  distinguished 
matchings of k - 1 sets of feature correspondences  between the  images.  Each  subproblem is 
solved by determining  the  hypothetical  structure  and  motion of each minimal  matching ( k  
sets of feature correspondences)  containing the  distinguished  matching  and  then  determining 
how many of the minimal  matchings yield consistent structures for the distinguished  match- 
ing and  motions  that  are  consistent  with  them belonging to a single object.  This is repeated 
for enough  distinguished  matchings to find all of the rigidly  moving objects  consisting of 
some minimum  fraction of all  image  features. 

Our  analysis for implicit  matchings  implies that we must  examine  approximately E'-' In $ 
trials  to find objects whose fraction of the  total  number of data  features is at least E with a 
probability of failure for a particular  object no larger  than y. 

9 Summary 
This  paper  has  described a technique that we have named  RUDR for solving model  extraction 
and  fitting  problems such  as  recognition and regression. This  approach is very  general  and 
can  be  applied to a wide variety  probIems where a model  is fit to a set of data  features  and 
it is tolerant  to noisy data features!  occlusion, and  outliers. 

The  RUDR  method draws  advantages  from  both  the  generate-and-test  paradigm  and 
from parameter  space  methods based on the Hough transform.  The key ideas  are: 

1. Break down the problem into  many srxll  subproblems  in which only the model posi- 
tions  consistent  with some  disr;inguis;xd rria-iching of features  are  examined. 

2. Use randomization techniques to limit  the  number of subproblems that need to be 
examined  to  guarantee  a low probability of failure. 
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3. Use clustering  or  parameter  space  analysis  techniques  to  determine  the  matchings  that 
satisfy  the  criteria. 

The use of this  technique yields two primary  advantages over previous  methods.  First, 
RUDR  is  computationally efficient and  has a low memory  requirement.  Second, we can use 
methods by which the localization  error  in  the data  features is propagated precisely, so that 
false positives  and false  negatives do  not  occur. 
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